Área do Paralelogramo

> Área do Paralelogramo

A área do paralelogramo é a medida equivalente a superfície do paralelogramo. Paralelogramos são polígonos quadriláteros em que os lados opostos são paralelos e congruentes (mesma medida).

Área do Paralelogramo

Os ângulos opostos e internos do paralelogramo também possuem as mesmas medidas pelo fato dos lados opostos serem paralelos. A soma dos ângulos internos é igual a 360°. Analogamente, a soma dos ângulos externos também é igual a 360°.

Para calcular a área de qualquer figura geométrica utilizamos a unidade de medida do Sistema Internacional para a área, que é a metro quadrado (). Podemos ainda utilizar variações como o centímetro quadrado (cm²), milímetro quadrado (mm²), etc.

Índice do Artigo

Elementos do Paralelogramo

Todo paralelogramo possuem os seguintes elementos na sua formação:

  • Quatro lados: os paralelogramos possuem quatros lados, sendo os lados opostos paralelos. Os lados são segmentos de retas, também chamados de arestas, que se unem nos vértices;
  • Quatro vértices: os vértices são pontos onde os lados se unem;
  • Quatro ângulos internos: o paralelogramo possui quatro ângulos internos e os ângulos opostos são congruentes (mesma medida). Alguns paralelogramos, como o quadrado e o retângulo, possuem todos os ângulos congruentes.
  • Quatro ângulos externos: todos paralelogramo possuem ângulos externos que são complementares aos ângulos internos. A soma do ângulo complementar com o ângulo interno é igual a 180°;
  • Duas diagonais: as diagonais do paralelogramo são segmentos de retas que ligam dois vértices opostos.

Exemplos de Paralelogramos

Os polígonos que são paralelogramos são:

  • Retângulo: o retângulo é um paralelogramo, possui quatro lados paralelos. Os lados opostos possuem as mesmas medidas. Todos os ângulos são retos (90°);
  • Quadrado: o quadrado também é um paralelogramo, tem as mesmas características do retângulo, a única diferença é que a medida de todos os lados e as diagonais são iguais.
  • Losango: o losango é outro polígono que é um paralelogramo, com lados opostos paralelos e congruentes. Além disso, os ângulos opostos possuem as mesmas medidas.

Leitura recomendada:

Área do Paralelogramo

O cálculo da área do paralelogramo é feito realizando o produto entre a base do polígono pela altura. Para isso utilizamos a seguinte fórmula:

A = b . h

Onde:

  • A: é a área;
  • b: é a base;
  • h: é a altura.

Leitura recomendada:

A área do quadrado pode utilizar a fórmula acima, veja o artigo sobre a área do quadrado para entender melhor.

A área do losango é diferente da fórmula acima mostrada, veja como calcular a área do losango.

Perímetro do Paralelogramo

O perímetro do paralelogramo é a soma das medidas de todos os lados do polígono. Para calcular o perímetro utilizamos a seguinte fórmula:

P = 2(a + b)

  • P: é o perímetro;
  • a e b: são as medidas dos lados;

Leitura recomendada:

Diagonais do Paralelogramo

Todo paralelogramos possui duas digonais que dividem o polígono em duas partes cada diagonal.

Área do Paralelogramo

As diagonais se cruzam nos seus pontos médios, dessa forma o ponto de intersecção das diagonais é o centro do paralelogramo.

Exercício Resolvido

  1. Seja um paralelogramo ABCD com 30 cm de base e 10 cm de altura. Calcule a área desse polígono.
  • Dados do problema:

    • Base (b): 30 cm
    • Altura (h): 10 cm
  • Área do Paralelogramo: a área do paralelogramo é calculada pela seguinte fórmula: A = b . h

    Substituindo os valores na fórmula, temos:

    A = 30 . 10 = 300 cm²

É isso. Dúvidas, utilize os comentários.

Curta e favorite! 😉

Bons estudos! 😄






Autor

Jean Carlos Novaes by

Formado em Ciência da Computação na UFBA. Depois de ficar sete anos tentando cursar uma universidade, conseguiu entrar na UFBA prestando um dos mais concorridos vestibulares do país.
LinkedIn


Leitura Recomendada



comments powered by Disqus